伏羲号

arctanx的导数是什么意思(arc tanx求导是什么?)

x=tanyarctanx的导数为1/(1+x²)

解:令y=arctanx,则x=tany。

对x=tany这个方程“=”的两边同时对x求导,则

(x)'=(tany)'

1=sec²y*(y)',则

(y)'=1/sec²y

又tany=x,则sec²y=1+tan²y=1+x²

得,(y)'=1/(1+x²)

即arctanx的导数为1/(1+x²)。

1、导数的四则运算(u与v都是关于x的函数)

(1)(u±v)'=u'±v'

(2)(u*v)'=u'*v+u*v'

(3)(u/v)'=(u'*v-u*v')/v²

2、导数的基本公式

C'=0(C为常数)、(x^n)'=nx^(n-1)、(sinx)'=cosx、(cosx)'=-sinx、(tanx)'=sec²x、(secx)'=tanxsecx

3、函数可导的条件:

如果一个函数的定义域为全体实数,即函数在其上都有定义。函数在定义域中一点可导需要一定的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在。只有左右导数存在且相等,并且在该点连续,才能证明该点可导。

可导的函数一定连续;连续的函数不一定可导,不连续的函数一定不可导

y= arctanx

dx/dy =1/sec^2(y)=1/(1+tan^2(y))=1/(1+x^2)

y'(x)=1/1+x^2

三角函数求导公式:

(arcsinx)'=1/(1-x^2)^1/2

(arccosx)'=-1/(1-x^2)^1/2

(arctanx)'=1/(1+x^2)

(arccotx)'=-1/(1+x^2)

(arcsecx)'=1/(|x|(x^2-1)^1/2)

(arccscx)'=-1/(|x|(x^2-1)^1/2)


版权声明:本文内容由互联网用户自发贡献以及网络收集编辑和原创所得,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任,详见本站的版权声明与免责声明。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 2358834048@qq.com 举报,一经查实,本站将立刻删除。 转载请注明出处:https://www.fxcyw.cn/tgzl/5624.html

分享:
扫描分享到社交APP
上一篇
下一篇
发表列表
请登录后评论...
游客 游客
此处应有掌声~
评论列表

还没有评论,快来说点什么吧~